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The evaluation of the linear complexity and the
autocorrelation of generalized cyclotomic binary

sequences of length 2npm

Vladimir Edemskiy, Olga Antonova

Abstract—In this article, we discuss a computation method for
the linear complexity of generalized cyclotomic binary sequences
of length 2npm. This method allows to assess the linear complex-
ity of above-mentioned sequences and to design the sequences
with high linear complexity. Also we generalize known results
about binary sequences of length 2pm. In conclusion we evaluate
the autocorrelation of generalized cyclotomic binary sequences
of length 2npm. In most cases these sequences have high linear
complexity and poor autocorrelation performance.

Index Terms—Autocorrelation, linear complexity, generalized
cyclotomic binary sequences

I. INTRODUCTION

THE linear complexity of a sequence is an important
characteristic of its quality. The linear complexity may

be defined as the length of the shortest linear feedback
shift register that is capable of generating the sequence [16].
Knowledge of just 2L consecutive digits of the sequence
is sufficient to enable the remainder of the sequence to be
constructed (about nonlinear feedback shift register see [1], [2]
and also references therein). Thus, it is reasonable to suggest
that ’good’ sequences have L > N/2 (where N denotes the
period of the sequence) [3], [18]. The autocorrelation is also
important for many practical applications [3], [11].

Classical cyclotomic classes and generalized cyclotomic
classes can be used to construct binary sequences, which are
called classical cyclotomic sequences and generalized cyclo-
tomic sequences, respectively [3]. C. Ding and T. Helleseth
first introduced a new generalized cyclotomy of order 2 with
respect to pe11 . . . pett , which included classical cyclotomy as a
special case, and subsequently showed how to design binary
sequences based on this new construction. T. Yan et al. [19],
Y. J. Kim et al. [15], and S. Y. Jin et al. [13] studied the
linear complexity and autocorrelation properties of generalized
cyclotomic binary sequences of length pm (see, also the article
[6]).

J. W. Zhang et al. [20] proposed two generalized cyclotomic
sequences of length 2pm with high linear complexity. The
results of J. W. Zhang et al. were generalized in [7]. Later, P.
Ke et al. [14] represented new generalized cyclotomic binary
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sequences with period 2pm, which included constructions
proposed by J. W. Zhang [20] as a special case. P.Ke et al.
[14] discussed sequences defined by vector.

In this paper we discuss a computation method for the
linear complexity of generalized cyclotomic binary sequences
of length 2npm and evaluate the linear complexity and the
autocorrelation of generalized cyclotomic binary sequences of
length 2npm. In particular, we consider the sequences of length
2pm defined by two vectors. We show that in this case the
pattern noted by P. Ke et al [14] persists. In most examined
cases new generalized cyclotomic binary sequences have high
linear complexity, but do not have desirable autocorrelation
properties. We generalize results presented in [7]–[9], [14],
[20].

II. THE DEFINITION OF THE GENERALIZED CYCLOTOMIC
SEQUENCES

Let p be an odd prime, and let d be an even divisor p− 1.
Denote Hk = {θk+td mod pm, t = 1, 2, . . . , (p−1)/d}, k =
0, 1, . . . , d− 1. Here and hereafter θ denotes a primitive root
modulo pm, where m is a positive integer [12] and a mod
p denotes the least nonnegative integer that is congruent to
a modulo p. Then Hk, k = 0, 1, . . . , d − 1 are generalized
cyclotomic classes of order d with respect to pm [4].

If A is a subset of Zpm , then let us put by definition bA =
{ba mod pm|a ∈ A} and b+A = {(b+a) mod pm|a ∈ A},
where b ∈ Z.

Then, we have partitions

Z∗pm =
d−1⋃
i=0

Hi and Zpm =
m−1⋃
k=0

d−1⋃
i=0

pkHi ∪ {0}. (1)

Let N = 2npm, where n is a positive integer. The ring
residue classes ZN ∼= Z2n × Zpm relative to isomor-
phism φ(a) = (a mod 2n, a mod pm) [12]. Let Lj =

(I
(j)
0 , I

(j)
1 , . . . , I

(j)
m−1), j = 0, 1, . . . , 2n − 1, where I(j)i , i =

0, 1, . . . ,m − 1 are subsets of set {0, 1, . . . , d − 1} and
|I(j)i | = d/2. Denote Ej =

⋃m−1
k=0

⋃
i∈I(j)i

pkHi, Cj =

φ−1 ({j} × Ej).
By definition, put

C =
2n−1⋃
j=0

Cj ∪ {0, 2pm, . . . , (2n − 2)pm} and C̃ = ZN \ C.
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The generalized cyclotomic binary sequence S = {si} of
length 2npm is then defined by

si =

{
1, if i mod N ∈ C;
0, if i mod N ∈ C̃.

(2)

The sequence S is balanced by (1) and the definition.
In the particular case, when d = 2 we can consider {Lj , j =

0, 1, . . . , 2n − 1} as a set of any fixed binary vectors in Zm2 ,
i.e. Lj = (i

(j)
0 , i

(j)
1 , . . . , i

(j)
m−1), j = 0, 1, . . . , 2n − 1.

If g is an odd from integers θ and θ + pm, then g is a
primitive root modulo 2pm [12]. Let Dj = {gj+2t mod
2pm; t = 0, . . . , pm−1(p− 1)/2− 1}, j = 0, 1 be cyclotomic
classes modulo 2pm, and let indθ2 be a discrete logarithm
of 2 base θ in the field GF (p). It is easy to see that Dj =
φ−1 ({1} ×Hj) and 2Dj = φ−1

(
{0} ×H(j+indθ2) mod 2

)
.

Hence, binary sequences proposed by J.W. Zhang [20] and
P. Ke [14] are special cases of S. They were obtained for
L1 = (1, . . . , 1) and L0 = (1, . . . , 1) or L0 = (0, . . . , 0) [20],
also for L0 = L1 = L [14].

In the next sections we consider a computation method
for the linear complexity of S. Also we evaluate the linear
complexity and the autocorrelation function of S.

III. A COMPUTATION METHOD FOR THE LINEAR
COMPLEXITY OF GENERALIZED CYCLOTOMIC SEQUENCES

OF LENGTH 2npm

It is well known ( [3], [16]) that if {si} is a binary sequence
with period N , then the minimal polynomial m(x) and the
linear complexity L of this sequence is defined by

m(x) = (xN − 1)/
(
gcd(xN − 1, S(x))

)
,

L = N − deg
(
gcd(xN − 1, S(x))

)
, (3)

where S(x) = s0+ s1x+ ...+ sN−1x
N−1, S(x) ∈ GF (2)[x].

In our case N = 2npm, hence we have x2
npm − 1 =

(xp
m − 1)2

n

in the ring GF (2)[x] and

L = N − deg
(
gcd

(
(xp

m

− 1)2
n

, S(x)
))
. (4)

Let α be a primitive root of order pm of unity in the
extension of the field GF (2). Then, according to (3) and
(4), in order to find the minimal polynomial and the linear
complexity of S it is sufficient to find the zeros of S(x) in the
set {αv, v = 0, 1, . . . , pm−1} and determine their multiplicity.

Let us introduce auxiliary polynomials Sk(x) =∑
i∈pkH0

xi, k = 0, 1, . . . ,m− 1.
Lemma 1: If v ∈ Z, then∑

u∈φ−1({l}×pkHf )

αvu = Sk(α
vθf )

for all l = 0, 1, ..., 2n − 1 and k = 0, 1, ...,m− 1.
Proof: By definition of α we have αu = αu mod pm .

Since
{
u mod pm | u ∈ φ−1

(
{l} × pkHf

)}
= pkHf and

Hf = θfH0, then Lemma 1 is proved.
By Lemma 1 and the definition of the sequence S we obtain

that

S(αv) =
2n−1∑
j=0

m−1∑
k=0

∑
i∈I(j)k

Sk(α
vθi) + 2n−1. (5)

The method of computing the values Sk(αv) by using explicit
formulas for the cyclotomic numbers was proposed in [6] (d =
3, 4, 6, 8). So, by formulas (5) and (2) we can derive the linear
complexity and the minimal polynomial of S for any set of
subsets I(j)k , k = 0, 1, . . . ,m− 1, j = 0, 1, . . . , 2n − 1.

Now we consider an example of using formula (5). Ding
et al. [10] examined binary sequences with period 2p, p ≡
1(mod4) and optimal three-level autocorrelation function. If
p ≡ 1(mod4) then p = x2 + 4y2, x ≡ 1(mod4) [16] where
x, y are integers.

Lemma 2: If the binary sequence S defined by (2) for m =
n = 1, d = 4, and L0 = {i, j}, L1 = {l, j}, i, j, l are various
indices from zero to three, then the linear complexity of S is
L = 2p, if y ≡ 1(mod 2) or y ≡ 2(mod 4), |i− l| 6= 2 , and
L = (3p+ 1)/2 otherwise.

Proof: By (5),

S(αv) = S4(α
vgi)+S4(α

vgj )+S4(α
vθl)+S4(α

vgj )+1 =

S4(α
vgi) + S4(α

vgl) + 1.

The values of S4(α) were shown in [6], after summing up
we get that the order of set |v : {S(αv, v = 1, ..., p − 1}|
equals zero, if y ≡ 1(mod 2) or y ≡ 2(mod 4), |i − l| 6= 2
and equals (p− 1)/2 otherwise.

Its easy to prove that S(1) 6= 0. From this and by (4) we
get the statement of Lemma 2.
In particular, from Lemma 2 it follows that binary sequences
of period 2p found in [10], which have optimal periodic
autocorrelation function (y = 1 or x = 1, |i − l| 6= 2, have
also high linear complexity L = 2p (in other case from [10]
which we do not consider here, L = 2p− 2).

Also we can design the sequences with high linear com-
plexity by formula (5) without using the values of auxiliary
polynomial. The following lemma allow to evaluate the linear
complexity of S.

Lemma 3: If v ∈ phZ∗pm , h = 0, 1, . . . ,m− 1, then

d−1∑
j=0

Sk(α
vθj ) =

{
1, if h = m− k − 1;

0, else.

for k = 0, 1, . . . ,m− 1.
Proof: By (1) and the definition of the auxiliary polyno-

mial we have
∑d−1
j=0 Sk(α

vθj ) =
∑
i∈pkZ∗

pm
αvi. Then

d−1∑
j=0

Sk(α
vθj ) =

{
0, if k + h ≥ m;∑
j∈Z∗

pm−k−h
αp

k+hj , if k + h < m.

By the condition, αp
m − 1 = 0 and the order of α equals pm,

hence we obtain
∑
j∈Zpm−t

αjp
t

= 1. Then

∑
j∈Z∗

pm−t

αjp
t

=

{
1, if t = m− 1;

0, else.

Lemma 3 follows from the last formula.
Hence, by Lemmas 3 we can easily select the sub-

set I(j)k , j = 0, 1, . . . , 2n − 1 so that S(αv) 6= 0, v =
1, 2, . . . , pm−1. Then L = 2pm for n = 1 and L ≥ 2npm−2n
for n > 1.
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Example Let I
(0)
k = {0, 1}, I(1)k = {2, 3}, I(2)k =

{0, 3}, I(3)k = {0, 3}, k = 0, 1, . . . ,m − 1 for d = 4 and
n = 2. Then by Lemma 3 and (5) we have S(αv) = 1, v =
1, 2, . . . , pm − 1. Hence, L = 4pm − 4 and m(x) = (x4p

m −
1)/(x−1)4 by (3). Note that in this case we can take any other
subset I(2)k = {0, 3} and I(3)k = I

(2)
k , k = 0, 1, . . . ,m− 1.

In the following section we investigate an evaluation of the
linear complexity in detail for d = 2.

IV. THE EVALUATION OF THE LINEAR COMPLEXITY OF
GENERALIZED CYCLOTOMIC SEQUENCES OF LENGTH 2npm

Let

I = {k|
2n−1∑
l=0

i
(l)
k ≡ 1 (mod 2) and k = 0, 1, . . . ,m− 1},

i.e., the number of zeros and unities in the set {i(l)k , l =
0, . . . , 2n−1} for k ∈ I is odd. By I∗ denote the complement
of the set I in the set {0, 1, . . . ,m− 1}.

Theorem 4: Let generalized cyclotomic sequence S be
defined by (2). Then S(αv) = 0 for v = 1, ..., pm − 1
if and only if v ∈

⋃
k∈I p

m−k−1Z∗pm for n = 1 and
v ∈

⋃
k∈I∗ p

m−k−1Z∗pm for n > 1.
Proof: By Lemma 1 and the definition of S we have

S(αv) = 2n−1 +

2n−1∑
l=0

m−1∑
k=0

Sk

(
αvθ

i
(l)
k

)
or

S(αv) = 2n−1 +
∑
k∈I

(
Sk(α

v) + Sk(α
vθ)
)

by the choice of I .
Therefore, S(αv) = 0 if and only if

∑
k∈I Sk(α

v) +
Sk(α

vθ) = 1 for n = 1 and
∑
k∈I Sk(α

v) + Sk(α
vθ) = 0

for n > 1. In the first case, by Lemma 3, v ∈ pm−k−1Z∗pm
for k ∈ I , and in the second case v ∈ pm−k−1Z∗pm for k 6∈ I .
Theorem 4 is proved.

Corollary 5:

|{v|S(αv) = 0, v = 0, 1, . . . , pm − 1}| ={∑
k∈I p

k(p− 1), if n = 1;∑
k∈I∗ p

k(p− 1) + 1, if n > 1.

Corollary 6: Let generalized cyclotomic sequence S be
defined by (2). If I = ∅ and n = 1, then L = 2pm. Also, if
I = {0, 1, . . . ,m− 1} and n > 1, then L ≥ 2npm − 2n.

All sequences satisfying the conditions of Corollary 6 have
high linear complexity. Moreover, if the set of vectors {Lj}
defining the sequence is such that m − 1 6∈ I for n = 1 and
m− 1 ∈ I for n > 1, then

∑
k∈I(I∗) p

k(p− 1) ≤ pm−1 − 1.
By Corollary 5 and (4) we see that L ≥ 2npm−2npm−1, i.e.,
L > N/2.

In order to refine the estimate of the linear complexity,
we investigate the multiplicity of the zeros αv of S(x). For

this purpose let us examine the derivative of S(x) . Since(∑
i∈φ−1({l}×H

i
(l)
k

) x
i

)′
= 0 when l is even, then

S
′
(αv) = α−v

2n−1−1∑
t=0

m−1∑
k=0

∑
i∈φ−1({2t+1}×H

i
(2t+1)
k

)

αvθ
i
(2t+1)
k .

(6)
It is obvious from (6) that the analysis of S

′
(αv) substantially

differs in cases n = 1 and n > 1.
First, let n > 1. Define the set

J = {k|
2n−1−1∑
t=0

i
(2t+1)
k ≡ 1 ( mod 2) and k = 0, 1, . . . , n−1},

that is the number of zeros and unities in the set {i(2t+1)
k , t =

0, . . . , 2n−1 − 1} is odd for k ∈ J . By J∗ denote the
complement of J in {0, 1, . . . ,m− 1}.

Lemma 7: If n > 1 and αv is a zero of S(x), then αv is a
multiple zero if and only if v ∈

⋃
k∈I∗∩J∗ p

m−k−1Zpm .
Proof: By (6) and the definition of J , we obtain

S
′
(αv) = α−v

∑
k∈J

(
Sk(α

v) + Sk(α
vθ)
)
,

similar as in Theorem 4. Then by Lemma 3, it follows that
S
′
(αv) = 0 if and only if v ∈ pm−k−1Zpm for k ∈ J∗. So,

the statement of Lemma 7 follows from Theorem 4.
From Theorem 4 and Lemma 7, we get the following

estimate:

L ≥ 2npm −
∑

k∈I∗\J∗
pk(p− 1)− 2n

∑
k∈I∗∩J∗

pk(p− 1)− 2n.

Hence, if n > 1, then it is easy to find out for which defining
vectors the sequence S has high linear complexity.

Let n = 1 and symbols be the same as before. Without loss
of generality, we can assume that Sm−1(α) 6= 0.

Theorem 8: If generalized cyclotomic sequence S is defined
by (2), then

(i) L = 2pm −
∑
k∈I p

k(p − 1) and m(x) =(
x2p

m − 1
)
/G(x), if p ≡ ±3(mod 8). Here G(x) =∏

k∈I

(
xp

k+1 − 1
)
/
(
xp

k − 1
)

.
(ii) L = 2pm − 1.5

∑
k∈I p

k(p− 1) and

m(x) =
(
x2p

m − 1
)
/
(
G(x)

∏
k∈I

∏
u∈pm−k−1Hfk

(x− αv)
)

,
if p ≡ ±1(mod 8).

Here

fk =

{
i
(1)
k , if (m− k) is even and p ≡ −1(mod 8);

1− i(1)k , else.

Proof: If n = 1 then S
′
(αv) = α−v

∑m−1
k=0 Sk(α

vθi
(1)
k ).

By Lemma 2 [6] we have

S
′
(αv) = α−v

(
Sm−1

(
αθ

i
(1)
k

+f

)
+ (m− k − 1)(p− 1)/2

)
,

if v ∈ pm−k−1Hf or

S
′
(αv) = α−v

(
T

(
βθ

i
(1)
k

+f

)
+ (m− k − 1)(p− 1)/2

)
,
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where β = αp
m−1

and T (x) =
∑
j∈H0 mod p x

j .
The values T (βv) were derived by C. Ding et al [5].

Specifically, if p ≡ ±3 (mod 8), then T (βv) 6∈ {0, 1},
that is S

′
(αv) 6= 0, and the first statement follows from

Theorem 4. In the case p ≡ ±1(mod 8), according to our
assumption T (β) = 1 and T (βθ) = 0, therefore S

′
(αv) = 0,

if v ∈ pm−k−1Hf for

f =

{
i
(1)
k , if (m− k) is even and p ≡ −1(mod 8);

1− i(1)k , else.

Applying (3) and (4), we conclude the proof of Theorem 8.

Theorems 1 and 2 [20], Theorem 1 [14] are special cases of
Theorem 8 (I = {0, 1, . . . ,m− 1}, I = ∅, respectively).

In the second case of Theorem 8, if the set of vectors {Lk}
defining the sequence S is such that m−1 ∈ I , then L ≤ pm,
i.e., in this case sequences do not have high linear complexity.
All results from the section IV have been verified by subjecting
various sequences to Berlekamp-Massey algorithm for small
values of p,m, and n.

V. AUTOCORRELATION OF GENERALIZED CYCLOTOMIC
SEQUENCES OF LENGTH 2npm

The periodic autocorrelation function CS(τ) of a binary
sequence {si} of period N is defined by

CS(τ) =
N−1∑
i=0

(−1)si+τ+si .

In this section we evaluate the autocorrelation function of
generalized cyclotomic binary sequences defined by (2). We
measure the autocorrelation function by using known methods
[13], [17] and generalized cyclotomic numbers of order 2 with
respect to ph for h ≥ 1 [4],

(u, v)(p
h) = |(H(ph)

v + 1) ∩H(ph)
u |,

where H
(ph)
j = {a (mod ph)|a ∈ Hj}. C. Ding and T.

Helleseth [4] showed that
1. If p ≡ 1 (mod 4), then

(0, 0)(p
h) = ph−1(p− 5)/4,

(0, 1)(p
h) = (1, 0)(p

h) = (1, 1)(p
h) = ph−1(p− 1)/4;

2. If p ≡ 3 (mod 4), then

(0, 0)(p
h) = (1, 0)(p

h) = (1, 1)(p
h) = ph−1(p− 3)/4,

(0, 1)(p
h) = ph−1(p+ 1)/4.

As before, let Ej =
⋃m−1
k=0 p

kH
i
(j)
k

. First we define the
difference function d(j, l, τ) = |Ej ∩ (El + τ)|.

Lemma 9: If τ ∈ pfHa, f = 0, 1, . . . ,m− 1; a = 0, 1, then

d(j, l, τ) =

f−1∑
k=0:i

(j)
k =j

(l)
k

pm−k−1(p− 1)/2+

(
pm−f−1(p± 1) + δ

)
/4,

where

δ =



−4, if a = i
(j)
f , a 6= i

(l)
f , p ≡ 3 (mod 4)

or a = i
(j)
f = i

(l)
f , p ≡ 1 (mod 4);

−2, if i(j)f = i
(l)
f , p ≡ 3 (mod 4)

or i(j)f 6= i
(l)
f , p ≡ 1 (mod 4);

0, if a = i
(l)
f , a 6= i

(j)
f , p ≡ 3 (mod 4)

or a 6= i
(j)
f , i

(j)
f = i

(l)
f , p ≡ 1 (mod 4).

Here we use the minus sign if i(j)f = i
(l)
f and the plus sign

otherwise.
Proof: To simplify the proof, we denote i(j)k , i

(l)
k as hk and

gk respectively. Then d(j, l, τ) =
∑m−1
k=0 |Ej ∩ (pkHgk + τ)|.

Let us break the last sum into three summands and examine
each of them separately.

1) Let k < f , then pkHgk + τ = pkHgk [6] and

f−1∑
k=0

|Ej ∩ (pkHgk + τ)| =
f−1∑
k=0

|pkHhk ∩ pkHgk | =

f−1∑
k=0:hk=gk

pm−k−1(p− 1)/2.

2) Let k = f , then

|Ej ∩ (pfHgf + τ)| = |pfHhf ∩ (pfHgf + τ)|

+
m−1∑
k=f+1

|pkHhk ∩ (pfHgf + τ)|.

The first summand from the last sum equals
(gf + a, hf + a)(p

m−f ). By Lemma 2 [19]

|pkHhk ∩ (pfHgf + τ)| =
(pm−k − pm−k−1)/2, if a = gf , p ≡ 1 (mod 4)

or a 6= gf , p ≡ 3 (mod 4);

0, else.

Therefore,

|Ej∩(pfHgf+τ)| =



(0, hf + a)(p
m−f ) + (pm−f−1 − 1)/2,

if a = gf , p ≡ 1 (mod 4);

(1, hf + a)(p
m−f ) + (pm−f−1 − 1)/2,

if a 6= gf , p ≡ 3 (mod 4);

(gf + a, hf + a)(p
m−f ), else.

3) Let k > f , then pkHgk + τ ⊂ pfHa [14] and

m−1∑
k=f+1

|Ej∩(pkHgk+τ)| =
m−1∑
k=f+1

|pfHhf∩(pkHgk+τ)| =

(pm−f−1 − 1)/2,

if a = hf and
∑m−1
k=f+1 |Ej ∩ (pkHgk + τ)| = 0 if a 6= hf .

Summing up the results, we obtain the statement of Lemma
9.
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Like Y. Sun and H. Shen showed [17], it is simple to see
that

|C ∩ (C + τ)| =
2n−1∑
u=0

|Cu ∩ (C(u−τ) mod 2n + τ)|+

|C∩{0, . . . , (2n−2)pm}|+|{0, . . . , (2n−2)pm}∩(C+τ)|,
and

|Cj ∩ (C(j−τ) mod 2n | = |Ej ∩ (E(j−τ) mod 2n + τ)| =
d
(
j, (j − τ) mod 2n, τ

)
.

Since CS(τ) = 4|C∩(C+τ)|−N , then Lemma 9 shows that
for m ≥ 1 the sequence S has poor autocorrelation properties.
Applying Lemma 9, we can derive the autocorrelation function
for the given set of defining vectors. In particular, from Lemma
9 we can simply obtain Theorem 2 [14].

Consider the autocorrelation function for τ ≡ 0(mod 2n).
Theorem 10: If the sequence S is defined by (2) and τ ∈

φ−1({0} × pfHa), f = 0, 1, . . . ,m− 1; a = 0, 1, then

CS(τ) = 2n(pm − pm−f − pm−f−1) +A,

where A = 0, if p ≡ 3(mod 4) and

A = |{t|i(2t)f = a, t = 0, 1, . . . , 2m−1 − 1}|−

|{t|i(2t+1)
f = a, t = 0, 1, . . . , 2m−1 − 1}|,

if p ≡ 1(mod 4).
Proof: Under the conditions of Theorem 10 we have

|C ∩ (C + τ)| =
2n−1∑
u=0

|Eu ∩ (Eu + τ)|+

|C ∩ ({0, . . . , (2n − 2)pm}+ τ) |+
|{0, . . . , (2n − 2)pm} ∩ (C + τ)|. (7)

By definition, put

A1 = |{t|i(2t+1)
f = a, t = 0, 1, . . . , 2m−1 − 1}|

and

A2 = |{t|i(2t)f = a, t = 0, 1, . . . , 2m−1 − 1}|.
From Lemma 9 it follows that

2n−1∑
u=0

|Eu ∩ (Eu + τ)| =

2n−1∑
u=0

d(u, u, τ) = 2n−2(2pm − pm−f − pm−f−1)−B, (8)

where B =

{
A1 +A2, if p ≡ 1 (mod 4);

−2n−1, if p ≡ 3 (mod 4).
.

If τ ∈ φ−1({0} × pfHa), then

|C ∩ ({0, 2pm, . . . , (2n − 2)pm}+ τ) | =
2n−1−1∑
j=0

|E2j ∩ ({0, 2pm, . . . , (2n − 2)pm}+ τ)| =

2n−1−1∑
j=0

|E2j ∩ {τ}|.

Similarly, |{0, 2pm, . . . , (2n − 2)pm} ∩ (C + τ)| =∑2n−1−1
j=0 |{0} ∩ (E2j + τ)|.
If p ≡ 1 (mod 4), then −1 ∈ H0 and −1 ∈ H1 if p ≡

3 (mod 4) [14]. Hence, |E2j ∩{τ}| is equal to 1, if a = i
(2j)
f

and zero if a 6= i
(2j)
f . Next,

|{0} ∩ (E2j + τ)| =


1, if a = i

(2j)
f , p ≡ 1 (mod 4)

or a 6= i
(2j)
f , p ≡ 3 (mod 4);

0, else.

Therefore,

|C ∩ ({0, 2pm, . . . , (2n − 2)pm}+ τ)|+
|{0, 2pm, . . . , (2n − 2)pm} ∩ (C + τ)| =

=

{
2A2, if p ≡ 1 (mod 4);

2n−1, if p ≡ 3 (mod 4).
(9)

Since CS(τ) = 4|C ∩ (C + τ)| −N , we obtain Theorem 10
by summing up (7), (8), and (9).
Theorem 10 shows that for m > 1 the autocorrelation function
of S is far from ideal (see [14]).

VI. CONCLUSION

We discuss a computation method for the linear complexity
of generalized cyclotomic binary sequences of length 2npm.
Also we generalize the results about binary sequences of
length 2pm and evaluate the linear complexity and autocorre-
lation properties of generalized cyclotomic binary sequences
of length 2npm. Our method allows to design the sequences
with high linear complexity.
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